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C A L C U L A T I O N  O F  A T R A N S P O R T  C U R R E N T  F R O M  A N O Z Z L E  W I T H  

T W O - P H A S E  F L O W  I N  T H E  P R E S E N C E  OF A C O R O N A  D I S C H A R G E  

I. L. Pankrat 'eva ,  V .  A.  Polyanski i ,  and V.  I. Sakharov UDC 532.5:537.5 

The operation of a source of charged aerosol particles which consists of a supersonic nozzle, 
a corona-forming needle-shaped electrode, and a device for injecting liquid droplets into a gas 
flow is considered. A theoretical model for two-dimensional, two-phase flow in the nozzle is 
considered. An algorithm of numerical calculation of such a flow is developed, and results of 
calculations of the electric transport current from the nozzle are given. 

I n t r o d u c t i o n .  In aerosols consisting of a gas, ions, and disperse-phase particles (droplets), the latter 
acquire an electric charge as a result of deposition on them of ions. Since calculations of flows of charged 

aerosols are complicated, especially with allowance for the effect of the intrinsic electric field, this problem 
has been the subject of a rather small number of studies. Ushakov and Franchuk [1] studied one-dimensional 
flows of aerosols with allowance for migration charging of particles. In the majority of applications, however, 
it is necessary to take into account both the migration and diffusion electrification of particles. Vasil'eva et al. 
[3] studied such flows in a one-dimensional formulation using the asymptotic formulas from [2]. A much more 
complicated case of non-one-dimensional gas flow with dispersed particles in a Lava] nozzle is considered 
below. Two-dimensional distributions of ion concentrations, space charge of droplets, and electric-current 
density, which are required to determine the transport current, are obtained for arbitrary Peclet electrical 
numbers Pe8. 

The goal of this work is to develop a numerical method for simulating processes in a nozzle with a 
corona discharge that  can be used to study and optimize the source of charged aerosol. 

Simulation was performed in the nozzle shown schematically in Fig. 1. The forechamber pressure is 
p0 = 0.1-1 MPa, the temperature is To = 373 K, and the carrier gas is air. Droplets were injected into the flow 
in the broad part of the nozzle (in section AA1). The hydrodynamics of this process was not considered. It 
was assumed that in section AA1 there is a uniformly distributed flow of droplets with a known concentration. 

The corona-forming electrode is the needle A1C, and the walls of the axisymmetric nozzle serve as the 
second electrode. Between the electrodes, external sources produce a potential difference ~o~, of about 2-30 kV. 
The characteristic electric-field strength in the nozzle throat is E0 ", 103 kV/m.  

Switching on the potential difference between the electrodes gives rise to a corona discharge in a 
neighborhood of the needle. The gas ions formed produce a space charge, which is carried by the flow containing 
liquid droplets. Besides the motion of the carrier gas, the ions are acted upon by the electric field. As a result, 
the streamlines of the ions and the carrier gas do not coincide. While moving, the ions stick to the droplets, 
which are assumed to move together with the carrier gas and are removed from the nozzle. The flow of charged 
droplets and the ion flow generate an electric transport current from the nozzle. 

C o n s t r u c t i o n  of  a F low M o d e l  for t h e  Flow. A model for the flow of the two-phase 
multicomponent mixture described above is constructed under the following assumptions. 

The degree of ionization of the gas carrier in the corona discharge is considered small (about 10 -1~ 
i.e., at a pressure of 101.3 kPa, the number of ions in the external area of the corona discharge is about 

Institute of Mechanics, Moscow State University, Moscow 117192. Translated from Prikladnaya 
Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 102-109, November-December, 1998. Original article 
submitted February 13, 1997. 
908 0021-8944/98/3906-0908 $20.00 Q 1999 Kluwer Academic/Plenum Publishers 



A 120~ 
B 

1.5 cm 

AI 0.5 

- -  7~ I C BI 

Fig. 1 

1013-1015 m-S). Therefore, the effect of the applied electric field on the motion of the carrier medium is 
ignored. The volume concentration of the droplets is low (of the order of 10-2), and their influence on the 
motion of the carrier medium is also ignored. 

The motion of the carrier medium (which is compressed, inviscid, and non-heat-conducting) is 
calculated within the framework of the theory of a Laval nozzle in a quasi-one-dimensional approximation. 
Particles with a characteristic size of about (1-3) �9 10 -6 m are considered. It is known that particles of such 
small sizes axe frozen in the carrier medium, and high-speed slip is absent. Therefore, in a steady flow, the 
particles move along streamlines of the carrier medium. 

The velocity of diffusion of the gas ions is determined by the P~eynolds electrical number Req, which 
is equal to the ratio of the characteristic velocity of the medium to the velocity of drift of an ion in the 
characteristic electric field. For pressures of 0.1-1 MPa, a temperature of about 400 K, and a field strength of 
about 103 kV/m,  the value of l~e~ varies from 0.2 to 3. Therefore, the gas ions generally move under the action 
of two forces - -  the friction force from the carrier medium and the Coulomb force. Since the directions of 
the electric field and streamlines of the carrier medium do not coincide, the motion of the gas ions cannot be 
considered one-dimensional. To calculate the distributions of the gas-ion density in the nozzle, it is necessary 
to use two-dimensional equations. As a result, the density distribution of the space charge of the droplets on 
whose surface the gas ions are precipitated in motion is apparently also two-dimensional. 

Basic  E q u a t i o n s .  The carrier medium is considered as a perfect gas. The effect of the particles and 
gas ions on the motion of the carrier medium is ignored. The equations of motion integrated with initial 
conditions corresponding to the receiver conditions (p0, p0) have the form 

"I - 1 p0 = (1 + 
p T / ; 

__-- PO (1 + ~L~_.I M2) 1/('-1) 

P 

(I) 

(2) 

1 

= c o s  ( 3 )  
O'mi n 

0 

In this case, a(~) = arctan [(RH)~ + ~((RB)~ - (RH)~)], a = r R  2, amin = rP~i'n, and F~ = dF/dz. Here z is 
the coordinate along the nozzle axis, RB(z) is the distance from the nozzle axis to its walls, RH(Z) is the 
distance from the nozzle axis to the surface of the needle, a(z) is the cross-sectional area of the nozzle, p is 
the pressure, p is the density, M = pV2/Tp is the current Mach number (7 = %/c~), V = (u 2 + v2) 1/2 is the 
modulus of the gas velocity, and u and v are the axial and radial velocity components. 

Equation (3) is used to determine the Mach number M from the specified nozzle shape R(z). After 
finding the M, we determined the' pressure and density from (1) and (2) and then the modulus of the velocity 
of the carrier gas: 

V = M (4) 
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The velocity components u and v are calculated under the assumption that the flow is quasi-one- 
dimensional, and, hence, the streamlines of the carrier medium are defined by the equations 

R(z)  = R (z) + - RH(Z)], 

where the parameter ~ varies from 0 to 1. The set of intermediate values of ~ allows the streamline shape to 
be gradually varied from the one close to the nozzle contour at the wails to an almost straight line near the 
axis. 

In a cylindrical coordinate system (z, r) with the z axis along the nozzle axis (see Fig. 1), the equations 
describing the motion of the gas ions have the form 

Oq 1 0 0 
0-'~ + -r ~r (rjr) + ~z (jz) = - w ,  jr = q(v + biEr), jz  = q(u + biEz). (5) 

Here q = eni is the space-charge density of the ions, jr and jz are the density components of the electric current 
of the gas ions, ni is the ion concentration, e is the proton charge, bi = e D i / k T  is the mobility coefficient of 
the ions (Di is the diffusivity of the ions, T is the temperature, and k is the Boltzmann constant), Er and Ez 
are the components of the electric-field strength, and w is the rate of sticking of the ions to the droplets 

w = npJi. (6) 

Here Ji is the gas-ion current per one particle, and np is the concentration of particles of radius a. It is assumed 
that the ions are singly charge and positive. 

The equations for the electric potential ~ have the form 

02~ + 1 0~ 02~ = 0~ 0~ 
Or 2 r ~ r  + ~ z  2 _4~r (q + Zr = ---Or, E ,  = ---Oz, (7) 

where e is the dielectric constant of the medium, qp = npep is the space-charge density of the particles, and 
ep is the particle charge. The quantity ep is variable because the sticking of the ions proceeds throughout the 
residence time of the particles in the flow. 

For Eq. (7), it is necessary to specify boundary conditions. On metallic surfaces: the potential difference 
= ~w on the needle and ~ = 0 on the nozzle walls (the walls are grounded). At the channel entry (in section 

AA1) E,  = 0, and at the exit from the channel (in section BB1) ~ = O. The last condition corresponds to the 
assumption of a grounded grid at the nozzle cutoff with zero hydrodynamic drag force. 

We formulate a boundary condition for Eq. (5) on the surface of the needle. In a corona discharge 
in air with almost atmospheric pressure near the surface of the corona-forming electrode, a great number of 
ionization and other electrokinetic processes occur. Detailed consideration of these processes is beyond the 
scope of the present paper. Following the well-known experimental data [4], we assume that  the indicated 
processes take place in a rather thin boundary layer near the needle surface. On the outer boundary of the 
layer there is a steady flow of gas ions of identical sign with space charge density q depending on the local 
strength of the electric field on the needle surface and discharge parameters. Experimental studies of a corona 
discharge in a gas stream give an analytical relation between the electric-field strength Ew on the needle 
surface and the gas parameters [4]. From the values of the gas parameters in the vicinity of the needle we 
calculate the value of Ew, which will be used as a deficit condition to close the problem, because it is not 
possible to determine experimentally or theoretically the density of the space charge formed by the gas ions 
on the outer boundary of the corona-discharge cover. Use of Ew to close the problem in [5] by an iterative 
procedure makes it possible to find the ion concentration on the boundary by solution of the problem using 
numerical methods. The iterative procedure consists of the following. The value of the space-charge density 
of the ions qw on the outer boundary of the corona cover is sought using the recursive relation 

r , 'E (~) 
(2( .L.~'i.~ t 

Here the superscript indicates the iteration number, E (s) is the electric-field strength obtained by numerical 
solution of the problem in the sth iteration, and a is the damping factor (in calculations, ~ -,~ 0.5)(The 
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iterations start with a solution of the problem for a certain value q~) and are finished when the value of E (s) 
coincides with adequate accuracy with Ew. The formula for calculating Ew from the gas parameters and the 
geometrical characteristics of the electrode is given below. 

Calcula t ion  of t h e  St icking of Ions to Drople ts .  According to the assumptions used, the flow 
region outside the corona cover contains gas ions of identical sign and aerosol particles, which are not charged 
when they are injected into the flow. A model for charging (electrification) of such particles in their motion 
in the region containing ions of identical sign (in the region of a unipolar space charge) is described below. 

The unipolax charging of aerosol particles is generally described by solution of the Cauchy problem 

de1' = Ji, t = 0 :  e p = O .  (9) 
dt 

In the stationary problem of the motion of particles along streamlines of the carrier medium, the 
derivative d/d t  contains only the convective part Vd/d l ,  where I is the distance along a streamline. 

The dependence of Ji on the flow parameters is determined by the state of the carrier gas, the 
dimensions and properties of the particle surface, etc. The finding of this dependence is a separate and 
frequently very complicated problem. 

We consider the case of rather large spherical particles whose radius a far exceeds the characteristic 
path length of the gas ions It. The ion distribution in the vicinity of a particle and the electrification current 
Ji axe found by solving the following boundary-value problem [6]: 

d i v j = 0 ,  j = - D i V q .  + q, biE. ,  r = a: q. = O, r --* cr q. --* q, (10) 
3--  

E, = - r i p , ,  s - ( S .  r ) ( 1 -  ~)- t -ep(-~ - ~) ,  Ji - - - / i n  ds, jn - -  (j. n). 
% / J  

s 
Here q. and E .  denote "microscopic" values of the space-charge density and the electric-field strength, which, 
with distance from the particle, tend to the background "macroscopic" values of q and E; j is the electric- 
current density of the ions, s is the electric-field potential, S is the surface of a particle, n is the outer 
normal to it, and r is the radius vector from the center of the particle. In writing Eq. (10) we have ignored 
the intrinsic electric field of the ions, the particle motion relative to the gas, and the unsteadiness of the 
process. Estimates show that such assumptions are true for the class of flows considered. After finding of 
the space-charge distribution from the solution of problem (10), the electric current on the particle surface is 
determined by integration. 

Generally, problem (10) does not have an exact analytical solution, but its numerical [6] or approximate 
analytical solutions can be constructed with allowance for the small parameters: the Peclet number PeE = 
e a l E l / k T  for PeE << 1 and Pe~ 1 for PeE >> 1. Such solutions are obtained in [2, 7] by the method of matched 
asymptotic expansions. We use the expressions obtained in [2, 7] for the electrification current: 

[ 1 ] . 
PeE --* 0: Si = 41raDiq[Io + o(pe2)], Io = A 1 + ~ PeEA exp (%) , A = e;(exp % - 1)-1; (11) 

PeE ---* oo: Ji = 4raDiq[Ioo(PeE,  e~) + o(PeE4/3)], Ioo(PeE, e~) = 3PeE(I1 + XI2 + X4/313). (12) 

1 1 o 1)e 0, /2 ---- ~ (1 --ep02"1/27 , I : l  > 1: Ix = ~(sgn ep -- /2 = 0, 

-1 1/2_ f(el), % = % < 0: f = , 

2 
e: o e; 1= (lepOl_ I)x-2/L x = 3FEE" e ; -  a ~ '  ep = 3PeE' ep 

In this case, 

1 ----- - -  e p )  , lep~ 1: I1  ~ (1 o 2 

/ , -  

Calculations using formulas (11) and (12) agree well with the numerical solution in [6] of problem (10). 
To calculate the electrification of the particles not only for the limiting but also for moderate values of PeE, it 
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is possible to use the interpolation formula derived on the basis of (11), (12), and the numerical calculations 
of [2]: 

d!l) = 4~raDiqI*. (13) 

Here I" = Io(eePeE, e;)(1 -- u) + uloo(PeE, e;), ze = 1 + 2.8Pe~ 7a, and u = Pe~:(1 + Pe~) -1. 
For PeE << 1 and PeE >> 1, formula (13) becomes expressions (11) and (12), respectively. Formula (13) 

allows one to determine the right side of Eq. (9) for flows with strong variations in the electric field, which 
include flows with a corona-forming electrode. Often, the condition ~ = l t /a  << 1 used in the formulation of 
problem (10) is not satisfied. An example is the charging of submicron particles under atmospheric conditions. 
Of the considerable number of papers on particle electrification for ,~ >> 1, mention should be made of the 
paper of White [8], in which the free-molecular motion of ions in the vicinity of a particle is considered. 
Without considering details of the derivation, we give the result obtained by White: 

J(i 2) = ~r a 2 vtq exp ( - e ; )  (14) 

(vt is the thermal velocity of the ions). To calculate Ji in the poorly studied region X ~ 1, it seems reasonable 
to use the combination 

Ji = r J! D + (1 - ,)j/2), r = (1 + ~)-1. (15) 

Sys tem of Equa t ions  for Calcula t ing the  Transpor t  Cur ren t  f rom t h e  Nozzle.  To solve the 
posed problem numerically, we write a system of equations in dimensionless form. For this, we introduce the 
following dimensionless variables: 

P ,  p* P V* V (p~0) 1/2 q b* b ~ - ~  - -  t t  0 ~ , q * - - - - - - ,  ~ - - ,  
P" 7o' u0' . q0 b0 

E* E ~w np ep 
=~0' E~ n;=~'n, e;=e,0, 

~ r Z tUO Ji r * ~ evo = akT~ r = z* = t* = 
J *  - 41raDiqo' ~ '  e ' -L' L '  L " 

Here p0, P0, and To are the gas properties in the receiver, L is the radius of the cylindrical portion of the 
nozzle, and nO is the droplet concentration at the entry to the cylindrical part of the nozzle. The value of n o 
is calculated from the mass flow rate of the liquid injected into the nozzle using the formula 

0 G 
r tp= uO~L2(4/3)~ra3pO. 

Here G is mass-flow rate of the liquid, the gas velocity u0 ~ in section AA1 (see Fig. 1) is calculated from 
isentropic relations with allowance for the receiver conditions, and pO is the density of the droplet material. 

The equations of motion for the carrier medium (1)-(4) are already written in dimensionless form: 

p* 

With allowance for expressions (6) and (13), the equation of continuity of the ions (5) is written 
dimensionless form 

) ( ) Oq* b* . 1 0 ,q .  + ~eq 
cqt* + q* u * + ~ e q E  , + r ~ r r  r v* E :  = -  st pq �9 ). (16) 

Expression (16) contains two dimensionless parameters: 

uo 47raDiLn ~ 
R e q -  boEo' Rs = tto 

where Req is the Reynolds electric number, and the parameter Rs characterizes the rate of sticking of the ions 
to the droplets. 
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The Poisson equat ion (7) in dimensionless variables becomes 

02~ * 1 0~* 02~ * 
0 r  .2 + r -'7 Or'-": § ~ = -Q(q* -I- ape;n;), (17) 

where Q = 4~rqoL/eEo and Rp = n~ The parameter  Q characterizes the contribution of the space 
charge of the ions to the  variation in the applied electric field, and Rp is the relative contribution of the 
droplet charge to the space charge of the medium.  

Equation (9), which describes the variation in the charge of a particle moving along the trajectory, in 
the dimensionless form 

de; _ eQq*I* 
dr* R% (18) 

does not contain new dimensionless parameters.  
The expression for the  total t ransport  current from the nozzle 

R 

= 27r ][(q + qp)u + qbiEz]r J dr 
0 

is written in dimensionless variables as 

R* 

= - J[(q* + P e;n;)u* + q'E:1 "dr'.  j*  
0 Req j r  

Here R is the radius of the  nozzle outlet section BB1 (Fig. 1) and J* = J/(2qouo~rR2). 
We give the dimensionless value of the  electric-field strength E*  on the surface of a stably corona- 

forming electrode [5]: 

E*  = 12.2611 + 0.298(r06)-1/2], 

where r0 is the local curvature  radius of the  corona-forming electrode (needle) and 6 = p/pnc (pnc is the air 
density under the s tandard  conditions p = 0.1 MPa and T = 293 K). We recall that  the value E*  is used in 
the iterative procedure to calculate the boundary value of the space charge density of the ions q*. 

The  above problem of nozzle flow of a two-phase mixture  containing a gas ionized by a corona discharge 
and liquid droplets is solved numerically. 

N u m e r i c a l  A l g o r i t h m .  We assign the  initial distribution of the space charge density of the ions and 
droplets (these values axe conveniently assumed to be zero over the  entire flow region). The  Poisson equation 
(17) is integrated, and the  external electric field is determined in a zero iteration. For a numerical solution 
of (17), we use a finite-element method on triangular grids. Next, from Eq. (16) we determine q* in the 
first iteration. Integrat ion of (16) is performed by a difference method  on a rectangular grid with specified 
concentrations. The  particle-charge distribution ep along a certain selected set of trajectories which cover the 
entire flow region is found by integrating Eqs. (18) using the Runge--Kutta method.  Further  from (17) we 
determine a new dis t r ibut ion of the electric potential and the electric-field strength,  calculate the boundary 
value of the variable q* using (8), again integrate (16), etc. The  process of iteration is finished when a steady 
distribution q* is a t ta ined over the entire flow region. In this case, as already noted, the field strength on the 
needle surface should have the  specified value of E*.  In the algorithm described, the t ime t* in Eq. (16) is an 
iteration parameter .  

R e s u l t s  o f  C a l c u l a t i o n s  of  t h e  T r a n s p o r t  C u r r e n t  f r o m  t h e  Nozz le .  The  receiver conditions 
and the applied potential  difference ~w were varied. It was assumed that  the gas ions are similar in transfer 
properties to NO + ions and the main component  of the carrier med ium is molecular nitrogen N2. The  following 
initial parameters were used: E0 = 106 V / m ,  L = 0.015 m, p0 = 0.5 MPa, To = 373 K, a = 10 -6 m, 

0 = 1016 u0 = 332 m/sec ,  n i m -a, e = 1, f~i 12 = 0.9 nm 2, G = 10 -2 kg/sec, ga = 28, pi = 30 a.m.u., 
n o = 1.33 �9 1014 m -3. Here f/~a 1 is the cross-section of the elastic scattering ion-neutral molecule, #a is the 
molecular weight of the main component of the carrier gas, and #i is the molecular weight of the ion. 
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The nondimensional values computed from the initial parameters have the following values: Req = 2.45, 
Rs = 0.2, P~ = 0.297, and Q = 2.7. 

Figure 2 shows the transport current J versus the applied potential difference ~,, when the pressure 
in the receiver is 0.5 MPa. When the pressure in the receiver is p0 = 0.2 MPa and the applied voltage is 
~,, = 15 kV, the transport current is J = 2.32 �9 10 -4 A. 

The calculations of the electric current from the supersonic-nozzle outlet with a central corona-forming 
needle-shaped electrode and the two-phase working medium gas-droplets show that the flow model constructed 
and the algorithm and programs developed can be used in numerical studies to optimize a device which is a 
source of charged aerosol. 

The authors thank A. V. Filippov for his help in performing calculations. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 
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